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SF-00170 Helsinki, Finland 

Received 10 January 1990 

Abstract. We compute various critical exponents of the supersymmetric u-model on S" 
within the large-&' expansion to O( l /N),  and deduce the anomalous dimension to three 
orders in perturbation theory. We demonstrate that unlike the bosonic model there are no 
discontinuities in the specific heat. 

1. Introduction 

I t  is well known that there is a close relation between continuous field theories and 
thermodynamic systems, For instance the O ( N )  nonlinear o-model near two dimensions 
is equivalent to the Heisenberg model (Brezin and Zinn-Justin 1976). Both models 
possess a two-phase structure, where in the former, the O ( N )  symmetry is broken in 
one phase, but restored in the upper. Near the critical point, in this and other models, 
physical quantities such as magnetisation, obey simple power law behaviour. More 
concretely, they depend on the difference in the temperature and critical temperature 
raised to some power, which is known as the critical exponent for that quantity. The 
exponents characterise the system and moreover, the principle of universality implies 
that they depend only on the dimensions of spacetime and any internal symmetry 
group, but not on the details of the interaction. Further, various exponents are not 
independent, since simple physical arguments can be constructed which relate them to 
other exponents. Such relations are known as scaling laws. (For an introduction see, 
for instance, Amit (1978).) 

As the nonlinear o-model is of interest because of its relation to the Heisenberg 
model, techniques have been developed by which its critical exponents can be deter- 
mined (Ma 1973). Perturbatively the model is renormalisable and asymptotically free 
only in two dimensions. Beyond two dimensions, one finds that the model is renor- 
malisable only within the (non-perturbative) large N expansion, and it is within this 
scheme that one deduces exponents for spacetime dimensions d,  where 2 < d < 4. In 
the initial work of Ma (1973) a large set of exponents were determined for models with 
long and short range, and Coulomb type interactions to O( 1 / N ) .  As a consequence the 
scaling laws were checked and found to be valid except for the specific heat, where it 
was thought that the law was anomalous in various dimensions do, where d0=2 + 2 / n  
for n > 1, which was also observed by others in a different approach (Abe and Hikami 
1973). Further examination revealed, however, that this scaling law was not anoma- 
lous (Abe and Hikami 1974). Instead, the 'anomalous' term which appeared, was a 
consequence of a discontinuity in the specific heat at these dimensions do. 
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A further reason for determining exponents for a-models is that one can deduce 
information about the perturbative structure of the field theory to three loops, by 
computing at most 1-loop graphs within the large N expansion. Clearly this technique 
avoids having to compute a large number of graphs in perturbation theory. For instance 
in (Hikami and Brezin 1978), the structure of the 3-loop anomalous dimension for the 
bosonic model can be easily written down from symmetry, leaving one constant to be 
determined. If the relevant exponent from the large N expansion is expanded near two 
dimensions, using the e expansion (d=2 + e ) ,  then the constant can be determined. 

For this reason it is of interest to extend the work of (Ma 1973) to examine the 
nonlinear a-model with supersymmetry, and deduce information about the structure 
of the various renormalisation group functions to three loops and beyond. Indeed 
the critical exponents in a supersymmetric extension of the a-model will of course 
differ due to additional interactions, and cancellations between various graphs in large 
N .  Moreover, as the bosonic sector of the supersymmetric O ( N )  model incorporates 
the model used by Ma, we need only compute those additional graphs which involve 
fermions. Further, we can examine if the specific heat remains discontinuous in the 
supersymmetric theory at the dimensions do. Finally, we remark that the evaluation 
of exponents in a supersymmetric model is useful, since it is not inconceivable that 
supersymmetry may be realised in nature in some bose fermi system. 

The paper is organised as follows. Section 2 contains a brief survey of the large 
N properties of the supersymmetric O ( N )  model, which are required to compute the 
exponents. This calculation is detailed in section 3, where the results of our next to 
leading order computation are summarised and compared with the bosonic case in a 
table at the end of the section. Finally, in section 4 we discuss the structure of the beta 
function and anomalous dimension to three loops and beyond in perturbation theory. 

2. Brief review of the model 

As the large N expansion of the supersymmetric O(N) model has been extensively 
examined (Alvarez 1978, Aref'eva er al 1979), we note only the properties relevant to 
our investigation. First, the model is described by the Lagrangian 

where ni and v i  are O(N)  vectors, all fields are real, the fermions U and v i  are Majorana, 
a is auxiliary and E. and U are Lagrange multiplier fields. In computing the effective 
action with (2. l), the ;I-multiplet of fields become dynamical and develop propagators 
which are determined by inverting their two-point functions, which is equivalent to 
summing a chain of bubbles in perturbation theory. To leading order they are 

2i 
N J (k, m2) E. - 2ma : - 

2i(g - 2m) 
N J ( k ,  m2) ( k2 - 4m2) 

2i 
N J (k ,  m2)  ( k2 - 4m2) 

u : -  

a : -  
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where 

2' 2 ' 2 ' k2 - 4m2 
r ( 2  - d / 2 )  ( 4 m ' q  k2)-2'd'2 ,Fl ( 2 - -  d - . - .  1 3 

(4n)dl2 J ( k , m  ) = - (2.3) 

and we work in Minkowski throughout. The quantity m is the mass which is generated 
in the large N expansion (Alvarez 1978, Aref'eva et a1 1979). 

Next we define the exponents of the system similar to (Ma 1973). Denoting the 
propagators of n' and I by G(k) and X(k) respectively, then we have at criticality, for 
small k 

G(k) - kP2+" X(k) - k'. (2.4) 

G(0) - (mi - mic)-? ~ ( 0 )  - (mi - mic)-' 

and above the critical temperature 

(2 .5)  

where mic is the critical value of mi and (mi - m i c )  is small. Finally, for the three-point 
function 

we define 

- k p .  (2.7) 

The scaling laws for the various exponents are (Ma 1973, Amit 1978) 

which we will verify for (2.1), as a consequence of our calculations. We note that in 
determining I], i and p, we will use J(k,m2) with m = 0, whilst for y and a, m # 0, 
which is apparent from the definitions. 

We close this section by noting how 
expansion. First, universality implies that 

the exponents are deduced within the 1/N 
they depend only on N and d.  Thus 

where v i  = q i ( d ) .  So substituting in (2.3), it is easy to see that 

(2.10) 

Hence calculating G(k) for small k within the 1/N expansion, and isolating the Ink 
contribution, its coefficient will determine I] to 0(1/N),  (Ma 1973). 

3. Determination of exponents 

We now present the calculation of the various exponents of (2.4), (2.5) and (2.7). Our 
discussion concentrates on the contributions which the addition of fermions make, 
since the purely bosonic graphs (n',).) have been treated in detail in (Ma 1973). 
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3.1. q 

The corrections to the n-propagator are deduced from the self-energy corrections C(k), 
which are illustrated in figure 1. Then 9 is determined from 

G - ' ( k )  = k2 + C(k) - X(0) (3.1) 

since for small k 

G-'(k) - k2(1-q lnk) .  (3.2) 

+ *  
x U e= 

Figure 1. Boson self-energy corrections. 

Computing the graphs we find 

(3.3) 

and note in this case C(0) = 0. The only modification that supersymmetry has been 
made here compared to the bosonic analysis is an additional factor of p 2  in the 
denominator of the integral. Clearly, for small k the small p region of (3.3) will yield 
the Ink piece (Ma 1973). So with a cut-off p, and writing the angular integration 
explicitly in d dimensions 

where 

T(d - 2) 
- ~ ( 4 2  - 1)r (2  - d/2)r(d/2) ' s -  

(3.4) 

(3.5) 

The integrations are elementary and yield 

(3.6) 
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3.2. y 

To determine y we must consider the self-energy at zero momentum and above the 
critical point, where there is a non-zero mass. At zero momentum the full mass m is 
defined via 

G-l(O) = m2 (3.7) 

G-’(o) = mi - m i c  + C ( m 2 )  - ~ ( 0 )  (3.8) 

m2 - ( C ( m 2 )  - ~ ( 0 ) )  - (m2)’ /7  

which may be rewritten in terms of the self-energy C ( m 2 )  and its critical value via 

where mg,+C(O)=O defines mic. Recalling though how y was defined in (2 .5)  near 
criticality, we rewrite (3.8) as (Ma 1973) 

(3.9) 
which allows us to extract l / y  from the self-energy corrections. In addition to the graphs 
of figure 1, this involves the tadpoles of figure 2, which clearly do not contribute to 9 .  
At leading order only the first graph of figure 2 gives a contribution, and it is easy to 
see it is 

(3.10) 

from which (Ma 1973) l / y , = d / 2  - 1. Hence, to determine y l ,  we need to isolate the 
(m2)d/2-1  In m2 term from the next to leading order self-energy corrections. Careful 
examination of the graphs of figure 1, reveals they involve logarithmic terms of the 
form m2 In m2 only, and hence do not contribute. Only the remaining tadpole graph of 
figure 2 is relevant. Moreover, we note that above criticality the self-energy corrections 
are now 

2 1 
- -@2 - m2) A 

N J(k ,m*)(k2  - 4m2)((k + p)2  - m2) 
2m2 1 

- 7 J ( k , m 2 ) ( k 2  - 4m2)(k2 - m 2 )  (3.1 1) 

Figure 2. Tadpole corrections to self-energy. 

Hence, the correction in figure 2 gives 

and cutting off the second integral since the small k piece contains the relevant term, 
we find with (3.10) 

(3.13) = I (d - 2)(  1 + 2 S d / N ) .  
Using the scaling law (2 .8)  for l/v, we deduce 

V-’ = d - 2 + O ( l / N 2 )  (3.14) 
from which it is clear that fermion contributions have cancelled the contributions from 
the boson sector. 
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3.3. I 
The exponents a and I relate to the corrections to the bubble sums for the I field. 
From (2.3) it is easy to find that A,=4 - d ,  with the corrections given by figure 3. 
We note that the second graph gives 4iJ(k, O)Sd In k whilst the self-energy graph gives 
iJVqJ(k,O)S, In k.  The 3-loop boson graph was computed in (Ma 1973), and was found 
to be 8i(d - 3 ) J ( k , O ) S ,  In k.  This 3-loop graph involves two triangle graphs which have 
the associated integral 

(3.15) 1 
p 2 ( p  + k ) 2 ( p  + q ) 2  ‘ 

T(k’  ‘ )  = 

For latter purposes we note that for large q / k  it has the asymptotic form 

T ( k , q )  - q-’J(k,O) 

d-4-n 

+ q - 2 J ( k , 0 ) ~ ( o , ( ~ ) - n + b , ( ~ )  n=l ) ,  (3.16) 

Figure 3. Corrections to the d two-point function. 

This is proved by taking the Mellin transform of T with respect to q ,  then computing 
the p integration. Finally, the inverse transform is performed and evaluated from the 
simple poles in the right half of the transform plane. 

The additional contribution to 1. comes from the fourth and fifth graphs. However, 
the final graph does not contain any Ink piece. The computation of the fourth graph 
is quite involved and we note various steps. With the (Euclidean space) definition 

(3.17) 

the %loop integral is 

4i 1 [ ( q 2 ) ’ T 2  - 2 q .  S k ‘ S - 2 q 2 k .  ST  + 2 q .  S q 2 T  - q 2 k .  q T 2  

+(q  . S)’ + q . kS’] [ J ( q ,  O ) J ( q  - k , 0 ) q 2 ( q  - k ) 2 ]  -’ (3.18) 

where we have performed a trace over 7 matrices. Clearly, terms in the numerator 
which behave as (q /k ) , - ‘  only, will give the Ink terms we are seeking. Noting 

(3.19) 
(3.20) 
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it is easy to find that with (3.16) 

cc 

n=l  

(3.21) 

for large q / k .  Alternatively, one may compute the integral explicitly via the method of 
Mellin transforms mentioned to yield the same result. As in the case of T ,  only the 
leading two terms of Sp are relevant for our purposes. With (3.16) and (3.21), it is easy 
to show that the (q . S ) 2 ,  q * k S 2  and k . 4 q 2 T 2  terms in (3.18) are irrelevant. Further, 
rewriting the relevant terms of the numerator with (3.19) and (3.20), we find the Ink 
piece is present only in the integrals 

(3.22) 

which yields the contribution 

- 8iJ(k,0)Sd(d -2) lnk .  (3.23) 

Thus collecting the various pieces, yields the simple expression 

i. = 4 - d + O(l /N2) .  (3.24) 

Moreover, the scaling law (2.8) predicts U to be 

4 - d  a = -  
2 - d -t ' ($) (3.25) 

3.4.  U 

The graphs required for z are those of figure 3, but considered at zero momentum. 
These have been computed already within a different context in this model (Gracey 
1989), and their sum, without the self-energy subtraction at zero momentum in the first 
graph of figure 3 may be rewritten as the simple integral 

1 
(3.26) 

which clearly does not yield any lnm2 term. The remaining self-energy subtraction 
piece gives 

(3.27) 

which appeared previously in (3.12). After isolating the Inm2 piece, we note that to 
leading order 

(3.28) 
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and with m2 - (mi - mic)? ,  we find 

a = t’i(4 - d)(l + 2S,/N) (3.29) 

which agrees with (3.25). 
In the bosonic case the same calculation of r involved the integral (Ma 1973) 

1 
J(k,  m2)(k2 - 4m2) 

(3.30) 

which has in addition to lnm2 pieces for all d ,  terms which contribute in dimensions 
do. These arise due to a discontinuity in the specific heat critical amplitude, and do not 
give additional ‘anomalous’ contributions to the scaling law (Abe and Hikami 1974). 
By contrast the integral (3.30) does not occur in the supersymmetric case, and so the 
specific heat is continuous. 

Figure 4. 0 ( 1 / N )  graphs contributing to Tls(&). 

3.5. p 

Finally, the graphs used to determine p are given in figure 4. As we have detailed 
the techniques required to extract this exponent in previous calculations, we note 
only the various cancellations which occur. First, the final graph of figure 4 gives 
no contribution in the light of (3.24), whilst the fifth graph has no logarithmic piece. 
Second, only the triangle graph involving fermions is relevant and writing it in terms 
of T and S,, it contains a piece which exactly cancels the third graph. Of the remaining 
terms the significant integral is 

161nk 
U -  

8 1 - 
N2J(k,0) J(q,0)q2(q - k/2)2 N2J(k,0)Sd’ 

(3.31) 
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Hence, with 8Sd In k / ( N 2 J ( k ,  0)) from the second graph, we find 

The results of our calculations are summarised and compared with the bosonic case in 
table 1. 

Table 1. Comparison of the exponents in the bosonic and supersymmetric o-models in the 
large-N expansion. 

Exponent Bosonic Supersymmetric 

4(4 - 4 sd 
dN 4 

4 E s d  

-(l--Sd) 1 8(d - 1) ~ 1 
d - 2  dN d - 2  

16(d - 2)(d - 1)  
4-d- sd dN 

4-d 

4(2d2 - 7d + 8) 4 
N 

4-d- -sd 4-d- sd dN P 

4. Discussion 

We conclude by relating several of the exponents we have to known results, since 
they are related to various renormalisation group functions. For instance, if g, is a 
non-trivial zero of the p-function, p(g,)=O, which therefore corresponds to a phase 
transition, then 

where y(g) is the anomalous dimension. This illustrates the conventional method of 
determining exponents, since the p function and anomalous dimension can be calcu- 
lated, in principle, to any order in field theory. Ordinarily, however, such calculations 
become exceedingly tedious after a few orders. Alternatively, if one knows the ex- 
ponents from an independent analysis, such as the large-N approach, then one can 
deduce information on the perturbative structure within this approximation. 

We illustrate this point by deducing the 3-loop anomalous dimension for the 
supersymmetric a-model. To three loops it takes the form (Hikami and Brezin 1978) 

y(g) = ( N  - 1)g + ? , ( N  - 1)(N - 2)g3 (4.3) 

where y, is to be determined. The N dependence is deduced from the fact that on SI, 
y(g)=g, leading to the factor (N-2). Further, in carrying out a perturbative calculation, 
in say, the parametrisation of (Brezin and Zinn-Justin 1976), there is always a trace 
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over the O ( N )  isospin labels in each loop leading to the factor (N - 1). The absence 
of a 2-loop contribution is deduced either from the argument which follows, or by 
explicit calculation with the parametrisation of S“ of (Brezin and Zinn-Justin 1976). 
As the boson sector of the supersymmetric model is the bosonic model itself, only the 
additional contributions to the boson propagator corrections involving fermions need 
to be computed. To two loops there is only one such extra non-zero graph, which 
modifies the coupling constant renormalisation, but leaves the 2-loop wavefunction 
renormalisation as equivalent to that of the bosonic model. Noting that 

d - 2  +o(--) (d - 2)4 
( N  - 213 gc = N-2 (4.4) 

which we demonstrate later, and substituting (4.4) into (4.3) and expanding in powers 
of E=d - 2, and 1/N 

y(g,)  = E + ( E  + y l E 3 ) / ~  + 0 ( € 4 ) .  (4.5) 

However, performing the same expansion for q,  where now 

it is easy to see yI=O.  Moreover, from (4.6) the 4-loop term of y(g)  will be of the form 

(4.7) - i ( i ( 3 ) ~  + ? J ( N  - I)(N - 21g4 

which involves one unknown constant, y z .  
We have shown that the 0 (1 /N)  correction to v vanishes in the supersymmetric 

case, and we now demonstrate this is consistent with the p function to all orders. 
Its structure can be deduced from simple arguments involving isomorphisms between 
Grassmann manifolds M ,  ( N ,  p ) ,  which are symmetric spaces, where 

M,(N,P) = G,(N)/[G,(N - P )  x G,(P)l (4.8) 

and G , ( N )  = O ( N ) ,  SU(N) or Sp(N) when r= l ,  2 or 4 respectively (Hikami 1982). 
We note that supersymmetry is unbroken on M , ( N , p )  since firstly, even dimensional 
Grassmann manifolds have positive Euler characteristics (Wolf 1967). Secondly, the 
argument to construct the Witten index for odd dimensional spheres (Witten 1982), 
can be readily extended to the remaining orthogonal Grassmann manifolds to show 
supersymmetry is unbroken on these, too. The approach using isomorphisms was first 
presented in (Hikami 1981), to deduce the form of the 3-loop B function for bosonic 
a-models on symmetric spaces and later extended to four loops (Hikami 1983). We 
will apply the arguments for the supersymmetric case. In addition to the isomorphisms 
such as 

M,(3,1) &(2,1) MI(% 1) 2 M4(2, 1) M,(4,2) E M,(6,2) (4.9) 

one allows for the analytic continuation of the classical Lie groups to negative values 
(Hikami 1981), summarised by the reciprocal relation (Hikami 1982) 

G, = G4/z(-~N/2).  (4.10) 
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From these properties and also that the model on S' is free, the structure of the 
j? function is determined as follows. I f  

n = l  

then the 8, will have terms of the form 

(4.1 1) 

(4 .12)  

which satisfies the obvious symmetry p + N - p  from (4.8), and in the light of (4.8) 
with (4.10) will have to be invariant under the transformations (Hikami 1982) 

U + 4 / ~  N -+ -UN / 2  p -+ - ~ i p / 2  g + - 2 g / ~  (4.13) 

implying the constraint 

U +  b + 2 c +  2d = n (4.14) 

at each order in n. Moreover, for the supersymmetric model we use the additional 
fact that for a-models on symmetric Kahler manifolds B,=O for n > 1 (Morozov et 
a1 1984), and we note that of (4.8) the two classes M 2 ( N , p )  and M l ( N , 2 )  are Kahler. 
Thus using only these facts, we can immediately write down the 4-loop structure of the 
4-loop P function as 

x p(N - p )  + 2 (  1 - s) ( N  + 2 - :)] g 5  [ (4.15) 

for M , ( N , p ) ,  where the constant b ,  is not determined via this method. (We have 
ignored terms with a factor of ( 1  - l/cc)(l - 2/rl)( 1 - 4/r) which clearly vanishes for the 
classical Grassmann manifolds.) This result (4.15) can also be deduced from the 4-loop 

function of a a-model on a general Riemannian manifold with one supersymmetry 
(Grisaru et a1 1986), which has been calculated via superfield methods, and is a function 
of the Riemann tensor. Evaluating it for the case of S N ,  one finds B4=c(N - 2 ) ( N  - 3) ,  
where c is known and non-zero. We note that the absence of O ( g 3 )  terms in (4.15) 
for general manifolds was first shown in (Alvarez-Gaume et a1 1981). The appearance 
of a quadratic in N for p4, rather than a cubic dependence is a particular example 
of a more general structure for p, in the supersymmetric model. From the symmetry 
arguments we mentioned, p, has at most a N"-2 dependence, and not N"-' as occurs 
in the bosonic case, which can be deduced simply by noting that with a + c=n - 1, 
n > l  

p, = UN"-' ( 1  - ( 2 / r ) )  + bN"-*p(N - p )  + O ( N " - * ) .  (4.16) 

(There are no terms N"g"+' for n > 1 from an explicit calculation of the p function in 
the large N expansion.) As M 2 ( N , p )  and M l ( N , 2 )  are Kahler for all N and p ,  then a 
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and b must vanish. Indeed this has to be the case to be in agreement with the exponent 
v.  From (4.4), an N"-' term in p, will give a non-zero 0(1 /N)  term in v, which would 
disagree with (3.14). We remark that it is the vanishing of p, n > 1 on Kahler spaces 
which forces N"-2 terms in p,, but of the set of manifolds S N ,  only S 2  is Kahler. In 
the bosonic case N"-l terms are present in p,, which is clear from table 1, and leads to 
a more involved structure for p4 in that model (Hikami 1982). 

We close by noting that in the supersymmetric model p5 involves only two unknown 
constants, since 

N 2  

(4.17) 

To deduce y2, b, and b, one would either have to perform an explicit perturbative 
calculation, which would be tedious, or calculate q and v to O(l/N3).  Techniques for 
the latter approach have recently been developed and applied to the bosonic model 
(Vasil'ev et a1 1981, 1982). We expect that a generalisation to include supersymmetry 
would be straightforward and probably simplified by a superspace approach. This is 
a direction we hope to pursue shortly as an insight into the five loop structure of the 
model will be revealed. 
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